Bibliography

Bibliography#

[1]

N. Cardiel. cleanest: Useful Legacy Code for Cosmic Ray Removal. In Pascal Ballester, Jorge Ibsen, Mauricio Solar, and Keith Shortridge, editors, Astronomical Data Analysis Software and Systems XXVII, volume 522 of Astronomical Society of the Pacific Conference Series, 723. April 2020. URL: https://aspbooks.org/custom/publications/paper/522-0723.html.

[2]

B. Husemann, S. Kamann, C. Sandin, S. F. Sánchez, R. García-Benito, and D. Mast. PyCosmic: a robust method to detect cosmics in CALIFA and other fiber-fed integral-field spectroscopy datasets. \aap , 545:A137, September 2012. arXiv:1208.1696, doi:10.1051/0004-6361/201220102.

[3]

Pieter van Dokkum and Imad Pasha. A Robust and Simple Method for Filling in Masked Data in Astronomical Images. Publications of the Astronomical Society of the Pacific, 136(3):034503, March 2024. arXiv:2312.03064, doi:10.1088/1538-3873/ad2866.

[4]

Pieter G. van Dokkum. Cosmic-Ray Rejection by Laplacian Edge Detection. Publications of the Astronomical Society of the Pacific, 113(789):1420–1427, November 2001. arXiv:astro-ph/0108003, doi:10.1086/323894.

[5]

Chengyuan Xu, Curtis McCully, Boning Dong, D. Andrew Howell, and Pradeep Sen. Cosmic-CoNN: A Cosmic-Ray Detection Deep-learning Framework, Data Set, and Toolkit. \apj , 942(2):73, January 2023. arXiv:2106.14922, doi:10.3847/1538-4357/ac9d91.

[6]

Keming Zhang and Joshua S. Bloom. deepCR: Cosmic Ray Rejection with Deep Learning. \apj , 889(1):24, January 2020. arXiv:1907.09500, doi:10.3847/1538-4357/ab3fa6.